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N m I O r n  ADVISORY COMMITTEZ m m0muT1cs 

SOME EFFECTS OF SOLIDITY ON TURNING THROUGH CONSTANT-TBICKNESS 

CIRCULAR-ARC GUIDE VAWES IN AXIAL AKNULAR F L O W  

By Harry Mankuta and Donald C. Guentert 

An imest igat ion was conducted on Bheet metal, circular-arc com- 
pressor inlet guide vanes i n  an annular cascade with untapered wa3.U 
t o  determine the  effect  of sol idi ty  on turning through a blade row. 
Guide vanes of 30° and 400 camber were investigated over a range of 
sol idi ty  from 0.5 t o  4.0. The variation in turning with solidity,  
i n  the form of a curve of the r a t i o  of turning angle to camber angle 
plotted  against  solidity, w a s  compared with similar curves obtained 
from several  two-dhensional methods. 

An equation similar i n  form t o  Constant’s rule, w h f c h  may be  used 
t o  predict  turning  angles  in cascades of configuration  similar  to that 
of this investigation, was obtamed from the data. This equation 
p lo t ted   in  the form of turning-angle  correction  based on a reference 

- sol idi ty  may be  used t o  extend the applicabili ty of existing guide- 
vane data and design  rules t o  other solidities. Because the change 
i n  turning angle produced by a change fn so l id i ty  is probably l i t t le  
affected by blade-thickness  distribution and cascade configuration, 
this turning-angle-correction curve can probably be applied t o  normal 
compressor-inlet guide-vane cascade configurations  using blades w i t h  
a circular-arc mean line. 

Surveys made downstream of the guide m e s  indicated  that lower 
solidities  than  those  presently used  (about 1.5) may be employed 
without exceeding loading limitations (for the inlet Mach number of 
0.35 of this investigation) . 

I n  order  to provide the large inlet  flow area  required  for high 
weight flows per  unit  frontal  ‘area encountered i n  high-thrust turbojet 
engines, the hub-tip r a t i o  a t  the entrance t o  the guide vanes is 
often made equal t o  0.5 or  less. If the guide vanes are of constant 
chord, and this is often  the case, the  sol idi ty  at the hub wil l  be as 
much as double that a t  the t i p .  In order to design guide vmes under 
such  conditions,  the magnitude of the  effect  of so l id i ty  on the turning 
angle m u s t  be known. Information of t h i s  nature is also required where 

UNCLASSIFIED 
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the number of guide vanes l e  reduced i n  an ef for t   to  reduce blade 
costs  and weight o r  t o  decrease  the Lluniber of surfaces upon  which ice 
can form in order to  minimize heating  requirements where inlet-guide- 
vane de-icing is used. This investigation was conducted to  determine 
experimentally  the magnitude of the sol idi ty   effect  on the turning 
through circular-arc guide vanes i n  order t o  permit the  extension of 
existing data and desigh rules (for example, reference 1) t o  other 
so l id i t ies  and t o  comgake the experimental turning  angles w i t h  those 
predicted by several two-dimensional lnethods. 

Circular-arc guide vane6 of 30' and 400 camber ui th  conatant 
chord length were investigated  in an untapered annulus over a range 
of sol idi ty  f r o m  0.5 t o  4.0, and the  results  are  presented  in  the 
form of a ra t io  of turning angle to camber angle and i n  terms of a 
turning-angle  correction from a reference  solidity. Colllparisons of 
the  ratio of turning  angle t o  camber angle  are made w i t h  the values 
that  would be expected  using the  turning-angle  relation for the  turbine 
cascades af reference 2, the potential flaw methods of references 3 
and 4, and an equation similar In form to  Constant' 8 rule  obtained 
from the data. 

Total-pressure  surveys were taken downstream of the guide vanes 
at  several  radii and are presented i n  the form of a total-pressure- 
loss factor f o r  the two blade camber angles  investigated In annuli of 

20, and 40 blades. 

SYMBOLS 

The following ~ y m b ~ l ~  are used in this report: 

two-dimensional lift slope determined from equations (7) 

chord length, (in. ) 

average angle exceBs factor 

angle excess factor  at inlet ,  defined by equation (1) 

angle  excess  factor at outlet, defined by equation (2) 

canstant 

number or blades 

average total-pressure loss across blade row, (lb/sq f t )  

radius 

. .  .. . 
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II 

cn 
c' 
r-l 
N a. 

P 

8 e 

a 

CP 

f 

distance between corresponding points on two adjacent  blades 
(spacing) , (in. 1 

upstream velocity,  (ft/sec) 

two-dimensional zero-lift  angle of attack, determined by equa- 
t ions  (7) and (8), (deg) 

angle m e t  air e e a  dth perpendicular t o  cascaae axis, (deg) 

angle  outlet air m a k e s  with perpendicular t o  cascade axis, (deg) 

mean a i r  angle between i n l e t  and out le t  air, 

angle between tangent t o  blade camber line at the leading edge 

$1 + B2 
2 2 (m3) 

and the perpendicular to cascade axis, (deg) 

-le between tangent t o  blade caniber line a t  the t ra i l i ng  edge 
and the perpendicular t o  cascade axis, (deg) 

angle exaggeration  f&tor, l / ~  

a i r  .density,  (slugs/cu ft) 

turning angle, $,-B,, (aeg) 

sol ia t ty ,  c/s 

blade camber angle, (deg) 

blade stagger  angle, angle between chord and perpendicular to 
cascade axis, (deg) 

singularity exponent, used to  determine radial distance of trans- 
formed o point to origin of coordinates in unit  circle  plane, 
(fig.  7 )  

turning angle - angle-of  attack slope 

Setup. - The apparatus t o  test the blades coasisted of a bellnaouth 

(f ig .  1). The constant-chord  blades  (2.20  in.  for 40' camber, 1.67 in.  
for 30° camber) were made of 1/16-inch  sheet  metal with tapered. 

h entrance  attached  to a constant  inner- and outer-diameter  passage 
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leading and trai13ng edges and were of constant  radius of curvature 
(3.22 in . ) .  The blades w e r e  s e t  with their  leading edges tangent to  
the annulus axis, which resulted i n  a zero incidence  angle  with  the 
axially  entering  air. The upstream Mach number was held  constant a t  
0.35; the Reynolds  nmiber based on chord length w a s  constant a t  
295,000 for  30°  camber and 388,000 f o r  40° camber. Ambient a i r  was 
taken from the room for   the  tes ts  and was axia l  and uniform at   the  
in l e t  t o  the guide vanes. 

Method of solidity  variation. - In order to  obtain  the  required 
range of sol idi ty  between 0.5 and 4.0, initial tests w e r e  conducted 
w i t h  40 blades. These t e s t s  provided data within the approximate 
sol idi ty  range of 2.0 to  4.0, which varied with the radius. Data 
were taken in   the  sol idi ty  range of 1.0 to 2.0 by removing every other 
blade  (leaving only 20 blades); and similarly, data were t e n  in the 
sol idi ty  range of 0.5 t o  1.0 by  removing every other blade (leavlng 
only 10 blades). This procedure was followed for  two blade camber 
angles, 30' and 40'. 

Measurements. - Instrmnent  surveys were made approximately one 
chord length  qstream and one chord length downstream of the leading 
edges and trai l ing edges, respectively.  Circumferential  instrument 
surveys for all radii were made downstream over one blade passage t o  
determine the average  angle, the s t a t i c  pressure, and the total 
pressure. Accuracy of the measured turning  angle i s  estimated to  be 
within f0.5O, the t o t a l  pressure  within &L percent of the dynamfc 
pressure, and the static  pressure  within &Z percent of the dynamic 
pressure. 

RESULTS AIiD DISCUSSIOM 

EFPect of Solidity on Turning Angle 

The turning  angles  obtained from approximately the middle 60 per- 
cent of the flow passa.ge  (where end-wall effects were considered 
small)  are shown i n  figure 2 as the parameter 6/Cp plotted Elgainst 
sol idi ty  f o r  both cambers investigated. The experimental turnlng 
angles used i n  figure 2 were corrected  for  exial-velocity changes 
acroas  the blade row by resolving the velocity &-am to a constant 
axial velocity equal to  the mean of the in le t  and outlet  axial 
velocities. The change i n  sol idi ty  from approximately 0.5 to  4.0 
covered Fn this investigation, produced changes i n  turning  angle of 
about 10' for  the 30°-camber blades and about 14' for  the 4p-camber 
blades. Somewhat values of 8/cp were obtained w i t h  the 
4O0-camber than w i t h  30O-caniber blades;  the  difference  corresporbd 
t o  approximately 2O at low so l id i t ies  and approximately 1' at the 
high sol idi t ies .  

N 

CD 
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As described  previously, the sol idi ty  range of th i s  investigation 
w a s  covered Fn three separate tests f o r  each camber angle, using 10, 
20,  and 40 blades. As a result, three separate groups of data points 
may be noted in figure 2 corresponding to the  three  solidity  ranges. 
Although these groups do not k t c h  exactly,  the  differences  are con- 
sidered  to be within the accuracy  with W c h  the turning angles can a 

[c 
r l  
N be predicted and measured. 

Comparison with Two-Dhensional Methods 

For camparison with the  experimental data, curves of B/Cp 
obtained from the potential  flaw methods of references 3 and 4 
(described in the appendix) and the rule recommended i n  reference 2 
f o r  turbine-type  cascades are presented in   f igure  2(a). This rule is 
a modification of Constant's rule and can be expressed as 

The value of m for the blade stagger angle  of this investigation is 
approximately 0.2. Good agreement is obtainedbetween  the  experimental 
data and the two-dimensional predictions mer most of the sol idi ty  
range. A t  low sol idi t ies ,  the results of reference 4 give  closer 
agreement with the average data, whereas at higher sol idi t ies   the 
results of reference 2 conform more closely w i t h  the average data. 
Values of G/cp for   so l id i t ies  above 2.5 were not calculated using the 
method of reference 4 because the method  becomes inaccurate at these 

b 

higher solidities. 

The experimental  values of O/Cp can be matched fairly well by 
an equation similar in form t o   constant"^ rule, i n  w h i c h  the constants 
have been modified. The resulting  equation may be expressed as 

8 / q  = 1 - 0.23 u - O * * ~  

A comparison between the experimental  values and the values  obtained 
f r o m  this equation is shown i n  figure 2(b) . 

Appllcation of Results 

fche curve  obtained from equation 2) and plotted in figure 2(b) 
may be used to predict turning angles f where the end-wall effects are 
smal l )  in cascades of configuration similar t o  that of this investi- 

will vary  with  the  particuLar  configuration of the cascade (wall taper, 
blade form, and radial variation of camber), inaccuracies may be 

B gation. Because the turning -le produced by a row of guide vanes 
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introduced i n  applying the curve of figure 2 (b) t o  other configurations . 
However, the change in turning produced by a change in   sol idi ty ,   as  
indicated by the  present  results, i s  expected t o  be generally  appli- 
cable t o  a l l  cnnfigurations and blade forms with a circular-arc mean 
l i ne  nomnally used i n  guide-vane designs. The turning  angles shown i n  h; 

figure 2 are,  therefore;  plotted in  the form of a turning-angle car- 5 

in solidity. These data  are sham in figure 3 and me compared with 

the  values of 8-6(u=1~6) obtained f'rm e w t i o n  ( 2 ) .  It may be  noted 
t? 

that the experimental data are  sanewhat- higher at  the higher so l id i t ies  
than  the  values  obtained f'rom equation (2) .  The .method used f o r  cor- 
recting  the turning angles fo r  chmges in axial  velocity did not 
account for the  influence of sol idi ty  on the Method of correction. It 
is probable, huwever, that the measured turning  angle becomea less 
affected by  ckanges in  axial   velocity Bcross the  blade row a6 the 
so l id i ty  is increased (that is, as  channel flow is  approached). For 
this reasan, the experimental  data  are  probably sanewhat high a t   the  
higher sol idi t ies  and it is recommended that the curve obtained from 
equation (Z), rather  than  the experimental points, be  used f o r  deter- 
mining the  turming-&gle  correction  factor for changes in s o l i d i t y .  

" 

A reference  solidity of 1.6 is used Fn figure 3 to  mElhe the results 
directly  applicable t o  reference 1, which is based on data the average 
solidity of w h i c h  is 1.6. In.the  present  investigation,  the change in 
axial velocity is resolved to  a constant axial velocity  equal t o  the 
mean axial velocity but  the method of resolving  the change i n  axial 
velocity,  either to a constant mean axial velocity or a constant inlet 
axial velocity, w a s  found t o  have l i t t l e   e f f e c t  on the experimental 

values when plotted  in the form of the  correction fac tor  e-e( ~=1.6) 
of figure 3. v 

Incidence  angles  other  than  zero  introduce an additional change Fn 
turning  angle which is also a function of solidity f o r  a given camber. 
The turning angle f o r  zero incidence i s  first calculated wing the 
previously  discussed methods and the additional chapge in turning due 
t o  the incidence  angle can be applied by the use of figure 4, which is 
obtained from the  potential-flow method of reference 3. 

Total-Pressure Iosses 

Total-pressure surveys were conducted downstream of the blades a t  
several radii and are plotted i n  figure 5 i n  the form of a 
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E T  total-pressure-loss  factor  for the two blade camber angles 
7 PV7 c -  I 

investigated where ET i s  the arithmetic average of the  total-  
pressure loss in one blade passage at a given radius. In the middle 
portion of the blade height, where the end effects are small, the 
total-pressure loss, i n  general,  decreases with decreasing sol idi ty  
or number of blades u n t i l  a m i n h u m  so l id i ty  is reached, at which 
point  the  blade  loading will become excessive and separation w i l l  
occur  causing  considerable  increase i n  the  total-pressure losses. 
hjidence that such excessive blade loading has occurred beyond the 
radius of 4.66 for  the 40° camber blades (X = 10) i s  provided by the 

sharp increase of r\p, w i t h  radius. The sol idi ty  at the r’aaius 
2 PV12 1- 

of 4.66 was 0.75 and the lift coefficient  for the i n l e t  Mach number 
of these tests of 0.35 was calculated to be 1.4. 

Although lowering the  sol idi ty  may decrease the total-pressure 
losses,  increases i n  circumferential  flow  variations that may  accompany 
a decrease i n  the number of guide vanes and that may adversely  affect 
the performance of subsequent blade rows must also be considered when 
reducing the number o f  guide  vanes. Although set t ing a lower limft on 
the  solidity of constant-thickness,  circular-arc guide vanes i s  
impossible, as this limit w i l l  vary with the  particular  application, 
it appears that  they may be designed w i t h  lower solidit ies  than  are 
commonly used (about 1.5) and s t i l l  not  introduce  serious  circm- 
fe ren t ia l  flow variations. These lover so l id i t ies  may be advantageous 
where it i s  desired to reduce the blade costs and weight o r  t o  decrease 
the  surfaces upon  which ice  can form i n  o r d e r .  to minimize heating 
requirements where inlet-guide-vane  de-icing is wed. 

CONCLUDING REMARKS 

me resul ts  of this  investigation  to determine the  effect  of 
so l id i ty  on turnfng through a blade row indicate that the equation 
e/cp = 1 - 0.23 cYooa3, where 8 i s  turning  angle, cp is blade camber 
angle, and cr i s  solidity,  can be used w i t h  reasonable  accuracy i n  
the  blade-height  portion  unaffected  by the end walls far predfcting 
the turning  angle through guide-vane cascades with configurations 
similar t o  that of t h i s  investigation. 

# This equation plotted in  the form of a turning-angle  correction 
based on a reference  solidity may be used to extend the app l i cab i l i t y  
of existing guide-vane data and design r u l e s  t o  other sol idi t ies .  - .  
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Because the change i n  turning angle. produced by 8 change ' i n  sol idi ty  
is  probably l i t t l e   a f fec ted  by blade-thickness  distribution and 
cascade configuration, this turning-an$le-correction.curve can 
probably be applied t o  any normal inlet-guide-vane cascade  configura- 
t ion  using blades with a circular-arc mean 1-e. 

. .  . . -  . " .. 
For an W e t  Mach nuuiber of 0.35, indications  are that ~ o l i d l t i e e  

l o w e r  than  those  currently used may be employed i n  comgressor inlet- 
guide-vane designs  without  exceeding loading limitations. 

L e w i s  Flight  Propulsion Laboratory, 

Cleveland, Ohio. 
National Advisory Committee for  Aeronautics, 

-. 
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APPENDIX - FCENTI& FLOW TEROUGH CASCADE OF CIRC!UUE AFES 

Solving f o r  the  inlet-  and outlet-air  angles  for the coMition 
where the twat t o  the leading edge is  perpendicular to the caSca.de 
direction, that is, r1 = 0 yields 

and 

where r2 coincides with the camber angle and M may be obtained as 
the reciprocal of the  turning-angle  exaggeration  factor p, given as 
a function of sol idi ty  and mean air angle P e (  i n  figure 6. By use 
of the preceding  equations, the inlet-  and outlet-air  angles can be 
determined. for smooth through flaw for  a cascade of given so l id i ty  and 
camber.  Because a zero  incidence angle is desired, the inlet-air  
angle must be changed by an munt equal t o  f3,. The effect of this 9 
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change on f3 may be determined.from figure 4, which was obtained by 
the u6e of &e methods of reference 3 and gives  the  theoretical m e  
i n  turning angle f o r  small changes in  angle  of attack over a range of 
sol idi t ies .  Thus, the outlet-air  angle p2 can be determined for a 
cascade of  circular blades of given camber and sol idl ty  set a t  zero 
incidence. 

Ivkthod of reference 4 .  - This method,  which i s  based on the 
concept of the th in   a i r fo i l ,  was developed for  application  to  decelera- 
t ing flow. It does not  lend itself t o  predicting the local flow dis- 
tr ibution near the airfoi ls ,   but   a t  a slight diatance downstream of 
the trailing edges-the f l o w  f ield is very close  to that of the real 
a i r fo i l .  Inasmuch as the  air-outlet  direction i s  the primary concern 
of this report and not the distribution  of the air forces on the blades, 
th i s  method should be sufficiently  accurate. 

The relat ion between outlet- and inlet-air angle is given i n  
appendix 111-of  reference 4 f o r  8 decelerating caeca&? as 

For accelerating f l a J t h i s  equation becomes 

where 

"0 s i n  a. = (:T tan In (coth 9 )  
Y t  

& a. cos a. = 4 ") Jcosh 2Jr + C O S  2(; 

Because the slopes of the curves of turning  angle against blade 
camber angle are practically  constant  for any given  solidity, a single 
curve of 8/cp against  solidity (fig. 2)  can be obtained. Comparisons 
of the results of the t m  methods showed that good  agreement w88 
obtained i n  the outlet-air angles predicted by the two methods a t  a 
sol idi ty  of about 1.5. Below this solidity,  the method of reference 4 

. 
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appeared t o  give results mre i n  agreement with  the data, whereas at 
sol idi t ies  above 1.5, the method of reference 3 appeared better.  
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1 Equst ion (2) 
6/cp = 1-0.23~ -0.83 1 

I 

-iiz&7= 
I 

.8 1.6 2.4 3.2 4.0 
Solidity, u 

(b) Equation ( 2 ) .  

Figure 2. - Comparison of ewrimenta l   tu rn ing  angles for 
30° and 40° cambered constant- thickness, constant-chord, 
circular-arc  guide  vanes in nontapered annuli with turning 
angles predicted by other methods. 
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(a) Camber angle, 30'. 
Figure 5. - Variation of total-pressure losses through annular cascade 

of constant-thickness,  circular-arc guide vanes. 

3 
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(b) Camber &e, 40°. 

17 

Figure 5 .  - Concluded. Variation of total-pressure losses through 
annular cascade of constant-thicknese, circular-arc guide vanes. 
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Augle of mean relative a i r  vector, am, deg 

Figure 6. - Variatim of turaing-angle exaggaation factor with lpBan rdative air vector for various gap-chmd 
ratios. (Flg. 81 of refereace 3.) 
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Figure 7. - Variation of singularity exponent with gap-chord ratio Tor various blade stagger angles. 
(Fig. 82 of reference 4.) 
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